Українські реферати, курсові, дипломні роботи
UkraineReferat.org
українські реферати
курсові і дипломні роботи

Основні задачі математичної фізики

Реферати / Фізика / Основні задачі математичної фізики

Література:

6. А.Н.Тихонов, А.А.Самаровский “Уравнения математической физики”, Гостехиздат, 1954.

7. Н.С.Пискунов “Диференциальное и интегральное исчисление”, т.ч., Москва, 1972.

8. П.И.Чинаев, Н.А.Минин и др. “Висшая математика, специальные главы”, Киев, 1981.

9. О.В.Мантуров та ін. “Математика в поняттях, означеннях, термінах”, т.ч., Київ, 1986.

10. П.Е.Данко, А.Г.Попов “Высшая математика в упражнениях и задачах”, ч.2, Москва, 1974.

Лекція №2.

Тема: Рівняння теплопровідності.

Розглянемо однорідний стержень довжини l. Будемо вважати, що бічна сторона стержня теплопроникна та що в усіх точках поперечного січення стержня температура однакова. Дослідимо процес розповсюдження тепла в стержні.

Розмістимо вісь 0Х так, що один кінець стержня буде співпадати з точкою х=0, а другий – з точкою х=l (див. рис.). Нехай u(x,t) – температура в січній стержня з абсцисой х в момент t. Дослідним шляхом визначимо, що швидкість розповсюдження тепла пролягаючого через січну з абсцисой х за одиницю часу, визначається формулою

(1)

розглянем елемент стержня, заключений між січними з абсцисами х1 і х2 (х2-х1=Dх). Кількість тепла, що пройшло через січну з абсцисою х1 за час Dt, буде рівно

(2)

те ж саме для січної з абсцисою х2

(3)

Прилив тепла DQ1-DQ2 в елемент стержня за час Dt буде рівний:

(4)

(Ми використали теорему Лагранжа до рівності ).

Цей прилив тепла за час Dt пішов на підвищення температури елемента стержня на величину DU:

DQ1-DQ2=cqDxSDU

(5)

де с – теплоємність речовини стержня, q – щільність речовини стержня (qDxS – маса елемента стержня).

Прирівнюючи вирази (4) і (5) одної і тої ж кількості тепла DQ1-DQ2, вийде:

або

.

Позначаючи k/cq=a2, ми одержуєм:

(6)

Це і є рівняння теплопровідності в однорідному стержні.

Щоб рішення рівняння (6) було повністю визначено, функція u(x,t) має задовільняти крайові умови. Крайові умови для рішення рівняння (6) можуть бути різні. Умови, які відповідають так званій першій крайовій задачі для 0£t£T, слідуючі:

u(x,t)=j(x) (7)

u(x,t)=y1(t) (8)

u(x,t)=y2(t) (9)

Фізичні умови (7) (початкові умови) відповідають тому, що при t=0 в різних січних стержня задана температура, рівна j(х). Умови (8) і (9) (граничні умови) відповідають тому, що на кінцях стержня при х=0 і при х=l підтримується температура, рівна y1(t) і y2(t) відповідно.

Тема: Розвязок задачі методом перетворення Фурє.

Нехай в початковий момент задана температура в різних січних необмежаного стержня. Потрібно визначити розподіл температури в стержні в наступні моменти часу.

Якщо стержень співпадає з віссю 0Х, то математично задача формулюється слідуючим образом. Знайти рішення рівняння

(1)

в області -¥<x<¥, t>0, задовільняюче початковій умові

u(x,0)=j(x) (2)

будемо шукати частинне рішення рівняння (1) у вигляді добутку двух функцій:

u(x,0)=-X(X)T(t). (3)

Підставляючи в рівняння (1), будем мати: X(x)T¢(t)=a2X¢¢(x)T(t) або

. (4)

Кожне з цих відношень не може залежати ні від х, ні від t, і тому ми їх прирівняємо постійній -l2. З формули (4) отримаємо два рівняння:

T¢+a2l2T=0, (5)

X¢¢+l2X=0. (6)

Рішаючи їх знайдем:

, X=Acoslx+Bsinlx.

Підставляючи в (3), отримаємо:

(7)

постійна С включається в А(l) і В(l).

Для кожного значення l ми торимаєм рішення виду (7). Произвольные постійні А і В для кожного значення l мають визначені значення. Виходячі з цього можна рахувати А і В функціями від l. Сума рішень виду (7) також є рішенням:

.

Інтегруючи вираз (7) по параметру l в границях від 0 до ¥ також отримаємо рішення

, (8)

якщо А(l) і В(l) такі, що цей інтеграл, його похідна по t і друга похідна по х існують і дістаютьсяшляхом диференціювання інтеграла по t і по х. Підберем А(l) і В(l) так, щоб рішення u(x,t) задовільняло умові (2). Покладаючись в рівності (8) t=0, на основі умови (2) дістанемо:

. (9)

Припустимо, що функція j(х) такова, що вона представіма інтегралом Фур’є:

або

. (10)

зрівнюючи праві частини (9) і (10), отримаємо:

(11)

підставляючи знайдені вирази А(l) і В(l) у формулу (8) отримаємо:

або, міняючи порядок інтегрування, отримаємо

. (12)

Це і є рішення поставленої задачі.

Перетворемо формулу (12). Обрахуємо інтеграл, що стоїть в круглих душках:

. (13)

Це перетворення інтеграла зроблено шляхом підстановки

. (14)

Позначимо

. (15)

Завантажити реферат Завантажити реферат
Перейти на сторінку номер: 1  2  3  4  5 

Подібні реферати:


Останні надходження


© 2008-2024 україномовні реферати та навчальні матеріали